Algorithms for Very Large Scale Causal Discovery & Feature Selection

Constantin F. Aliferis & Ioannis Tsamardinos

Discovery Systems Laboratory,
Department of Biomedical Informatics,
Informatics Center,
Vanderbilt University

Update of 9-12-2002
Definition:

- The Markov Blanket of some variable of interest T ("MB(T)") is the set of the immediate causes, immediate effects, and immediate causes of the immediate effects of T.

Note: C causes T, T causes I, etc.
Algorithms for Discovery : Causal Neighborhood

Definition:

- The Direct Causal Neighborhood can alternatively be defined as the set of Direct Causes and Effects of some variable of interest T ("DCE(T)").

Note: C causes T, T causes I, etc.
Algorithms for Discovery: Problem Statement

Goal:
- **Given:** Data (observations of \(T \) and a set of variables \(V \))
- **Find:** MB(T) or DCE(T)

Why?
Algorithms for Discovery: Motivation

Applications:

- MB(T) is the minimal set of predictor variables needed for classification (diagnosis, prognosis, etc.) of the target variable T.

- MB(T) and DCE(T) help us discover immediate causes and effects of T.

- MB(T) and DCE(T) can be used to discover total causal structure of domain (what variable is causing/is caused by what other variables).

- DCE(Ti) are specific/fine-grain “causal clusters” of variables Ti.
DSL Algorithms for Discovery

Previously MB(T) and DCE(T) could be discovered using a full-network induction algorithm, or various heuristic procedures

Characteristics of newly-developed algorithms:

- Sound given broad and well-defined assumptions
- Scale up to hundreds of thousands of variables
- Quality of output insensitive to errors in learning about the rest of the variables
- Computational performance insensitive to structure beyond the target T
- Behave well when confounders are not observed
Scalability

- As long as $\frac{MB(T)}{DCE(T)}$ is small relative to the available sample size, we can discover $\frac{MB(T)}{DCE(T)}$ regardless of how many variables are present in the data; our methods scale up to extremely large numbers of total variables without sacrificing soundness;
- The state-of-the-art (full-network) algorithms try to learn the whole network and are not tractable for large networks.
Insensitivity to errors in other parts of the network

As long as MB(T)/DCE(T) is small relative to the available sample size, we can discover it regardless of how successfully one can infer the MB/DCE of other features (i.e., remote errors do not contaminate local discovery);

The state-of-the-art full-network algorithms do not have this property.
Insensitivity to variable relationships in other parts of the network

- As long as \(\frac{MB(T)}{DCE(T)} \) is small relative to the available sample size, we can discover it regardless of how complex is the rest of the process.
- The state-of-the-art full-network algorithms do not have this property.
Discovery “Monotonicity”

Say true structure is:

With h unobserved, any sound algorithm (including DSL algorithms) will return: $DCE(T) = \{B, C\}$
Discovery “Monotonicity”

Say now that we can observe h.

By analyzing *only* the previous $DCE(T) = \{B, C\}$, and h we get the new $DCE(T) = \{h, C\}$.

State-of-the-art full-network algorithms either try to learn the hidden structure (an intractable and incomplete task) or have to re-analyze the full network (since local errors propagate as explained earlier).
Ongoing Work

Forthcoming:

- Discover total causal structure of domain
- Discover generalized-XOR (Gx) and quasi-Gx functions (e.g., for multi-gene etiology) as well as non-faithful distributions of any kind
- Filter causal hypotheses generated by application of other methods
- Combine with clustering to identify new molecular disease types
- Discover MB(T)/DCE(T) in dynamic domains/temporal data

- Problem-driven applications/evaluations